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1. Introduction. In any least squares fit involving the determination of a large 
number of parameters the accumulation of round-off error during the course of 
the computation, resulting in a loss of significance, is one of the most serious re- 
strictions. Since the evaluation of a large number of parameters and their variances 
by a least squares procedure on a high speed computer involves the inversion of a 
symmetric, positive-definite matrix it becomes important to choose an inversion 
scheme in which the effects of the accumulation of round-off error are minimized. 
This is especially true if limited memory space for storage precludes the use of 
double precision arithmetic. In this paper a comparison of several direct methods 
for inverting such matrices is given. An attempt has been made to consider the 
effects of both condition and order of the matrix to be inverted on the closeness of 
the computed inverse to the exact inverse. 

The matrix inversion methods compared are the Gauss-Jordan [1], Choleski [2], 
congruent transformation [3], and rank annihilation [4] schemes. To give a fair com- 
parison of the methods each was programmed in IBM 7090 FORTRAN II (Version 
2) using only single precision arithmetic (good to about 8 decimal digits). The 
error indicators were then computed using double precision arithmetic (good to 
about 16 decimal digits) so that the latter calculation was not a limiting factor. 
In the following discussion the symbols for matrices will be underlined while other 
symbols will not be. 

2. The Test Matrices. The first matrix chosen for testing the inversion routines 
was A* where the elements aij of A are given by 

2 (i 1), 
aij = {-1 ( - i I = 1 ). 

0 (? (i- j I > 1). 

The inverse of A is given by C/ (n + 1) where the elements cij of C are given by 

{i(n-i + 1) (i=j), 
cij = cij_ - i (j> i) 

cji = c (j < i), 

atid n is the order of the matrix. A is a symmetric positive definite matrix; it has a 
P-condition number [5] of approximately 4n2/7r2. In respect to both form and con- 
dition the matrix A is analogous to a least squares matrix derived from a well de- 
signed experiment. In addition to A the matrices A2 and A' were also inverted. The 
inverse of A2 is given by C2/ (n + 1)2, while the inverse of AK is given by C3/(n + 1)3. 

Received August 15, 1963. This work was performed at the Oak Ridge National Labora- 
tory and the Central Data Processing Facility, operated by Union Carbide Corporation for the 
U. S. Atomic Energy Commission. 

* The negative of this matrix was discussed by Newman and Todd [5]. 
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The latter two matrices have P-condition numnbers of 6n4/w4 and 64n6/r6 respec- 
tively and are hence progressively more ill-conditioned. In this respect they cor- 
respond to least squares matrices derived from increasingly more poorly designed 
experiments. 

In addition to the three matrices just mentioned two other test matrices were 
used. They are B, whose elements b,j are given by 

bj f2 (i=j), 
II (i j) X 

and D, whose elements dij are given by 

dij=n- n i-j 

The exact inverse of B is given by BINV whose elements binvij are 

binvij = i/(n + I) if i 7j, 

while the exact inverse of D is given by DINV whose elements dinvij are 

(n + 2)/(2n + 2) if i =j= 1 or n, 
if i = j 1 or n, 

2 ~~if Ji-j =1I and n 5~2, dinv i = "I I if i -jl = 1 and n=2, 
|1/(2n + 2) if Ji-jl = n- =I 1, 

10 if 1 < Ji-jI < n-1. 

3. The Error Indicators. In carrying out the comparison of the various inversion 
methods the test matrix was generated and inverted by each method to give 
(M) approx. Then the exact inverse was generated (using the above formulas and 
double precision arithnmetic) and as a measure of error the quantity Q defined as 

(3.1) Q = (i/n8) Z (M)e act - (M)approx Iii 
ii 

was computed for each method, where M represents the matrix inverted. The 
computations were performed with matrices of order 10, 15, 20, 25, and 30. In 
addition to Q two other quantities, recommended as error measures by Newman 
and Todd [5], 

(3.2) a = (1/n2) rij 
ij 

and 

(3.3) f = (1/n){ Zr }1 
ii 

were calculated, where R = (r,i) is the error matrix taken as 

(3.4) R = (M) - ,prox(M) - I 

where I is the identity matrix. The number Q obviously reflects the per term average 
of the overall difference between the approximate inverse matrix and the exact 
inverse matrix. 
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4. Results of the Computations. The A Matrix. All the methods tried gave an 
approximate inverse that was very close to the exact inverse of the A matrix for all 
orders from 10 to 30 except the rank annihilation method, in which case the routine 
used failed to invert the A matrix. The reason for this failure was evidently peculiar 
to the exact integers in the matrix and the particular computer procedure for the 
rank annihilation method; the procedure could undoubtedly be rewritten to obviate 
this particular failure although it was not considered warranted in the current com- 
parative study. Hence any one of the methods would be suitable for a well-condi- 
tioned least squares matrix in this range. All elements of the inverse matrix produced 
by the congruent transformation method were good to one in the eighth significant 
figure even for order 30. The Gauss-Jordan method and the Choleski method were 
close behind in that order. Not only did the congruent transformation method 
produce an inverse closest to the exact inverse of the A matrix but the values of 
a and f (as defined by Eqs. (3.2) and (3.3)) computed from the approximate inverse 
were lower thaii the corresponding values derived from the Gauss-Jordan and 
Choleski inversion routines as can be seen in Tables IA-ID. All the methods pro- 
duced inverse matrices, all elements of which were sinaller in magnitude than the 
exact inverse for all orders from 10 to 30. (The reason for this is unknown.) 

The A2 Matrix. In the inversion of the A2 matrix the effect of the condition of the 
matrix starts to become apparent. This matrix is not as well conditioned as the A 
matrix; in fact, its condition number is the square of the condition number for the 
A matrix and hence is proportional to the fourth power of the order. 

In the inversion of the A2 matrix for all orders from 10 to 30 the Gauss-Jordan 
method produced an inverse matrix closest to the exact inverse. The congruent 
transformation, the Choleski, and the rank annihilation methods gave very similar 
results and were somewhat inferior to the Gauss-Jordan method. All elements of 

TABLE IA 
A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method 

Gauss Jordan Method 

Matrix 
n 

A A2 A3 B D 

10 a 1.3 X 10-8 9.6 X 10-6 6.7 X 10-4 2.2 X 10-8 7.3 X 10-8 
f 1.9 X 10-8 1.4 X 10-5 1.1 X 10-3 2.7 X 10-8 9.1 X 10-8 
Q 4.8 X 10-8 2.7 X 10-5 2.1 X 10-3 5.5 X 10-9 3.3 X 10-8 

15 a 2.3 X 10-8 3.6 X 10-5 3.0 X 10-2 3.0 X 10-8 1.5 X 10-7 

f 3.6 X 10-8 7.1 X 10-5 4.7 X 10-2 3.8 X 10-8 1.9 X 10-7 
Q 7.8 X 10-8 8.3 X 10-5 2.6 X 10-2 6.4 X 10-9 4.8 X 10-8 

20 a 3.7 X 1O-8 1.1 X 10-4 5.0 X 10-1 4.0 X 10-8 2.2 X 10-7 

f 6.1 X 10-8 1.6 X 10-4 8.1 X 10-1 5.3 X 10-8 2.8 X 10-7 

Q 1.2 X 10-7 1.1 X 10-3 3.4 6.6 X 10-9 7.4 X 10-7 

25 a 4.3 X 10-8 4.3 X 10-4 3.4 5.0 X 10-8 3.7 X 10-7 

f 7.1 X 10-8 7.2 X 10-4 5.8 6.4 X 10-8 4.8 X 10-7 

Q 2.0 X 10-7 5.2 X 10-3 27 6.6 X 10-9 9.2 X 10-8 

30 a 5.1 X 10-8 1.3 X 10-3 13 6.1 X 10-8 5.3 X 10-7 

f 8.2 X 10-8 2.0 X 10-3 23.7 7.8 X 10-8 6.9 X 10-7 

Q 3.9 X 10-7 1.9 X 10-2 69 6.5 X 10-9 1.2 X 10-7 
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TABLE IB 
A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method 

Congruent Transformiation Method 

Matrix 
n 

A A2 A3 B D 

10 a 1.0 X 10-8 1.2 X 10-6 5 6 X 10-5 1.5 X 10-8 6.8 X 10-8 
f 1.5 X 10-8 1.4 X 10-6 7.2 X 10-5 2.5 X 10-8 1.1 X 10-7 
Q 5.9 X 10-9 1.0 X 10-4 1.3 X 10-2 7.9 X 10-9 2.6 X 10-8 

15 a 0.0 4.3 X 10-6 5.2 X 10-4 1.8 X 10-1 1.1 X 10-7 
f 0.0 5.6 X 10-6 7.1 X 10-4 3.0 X 10-8 1.7 X 10-7 
Q 0.0 1.2 X 10-3 1.3 9.2 X 10-9 2.9 X 10-8 

20 a 1.6 X 10-8 9.1 X 10-6 2.3 X 10-3 2.1 X 10-8 1.4 X 10-7 
f 2.6 X 10-8 1.2 X 10-5 3.2 X 10-3 3.9 X 10-8 2.5 X 10-7 
Q 1.0 X 10-8 7.4 X 10-i 29 1.0 X 10-8 5.4 X 10-8 

25 a 1.8 X 10-8 1.5 X 10-5 5.7 X 10-i 2.3 X 10-8 1.7 X 10-7 

f 3.1 X 10-8 2.0 X 10-5 7.5 X 10-3 4.3 X 10-8 3.1 X 10-7 
Q 6.2 X 10-8 2.7 X 10-2 229 1.0 X 10-8 6.4 X 10-8 

30 a 1.9 X 10-8 2.9 X 10-5 1.5 X 10-2 2.4 X 10-8 2.1 X 10- 
f 3.2 X 10-8 4.0 X 10-5 2.3 X 10-2 4.6 X 10-8 4.3 X 10-7 
Q 2.2 X 10-8 1.1 X 10-1 1885 1.0 X 10-8 7.3 X 10-8 

TABLE IC 
A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method 

Choleski Method 

Matrix 

n - _ __ _ . ... A A2 A3 B D 

10 a 2.0 X 10-8 1.6 X 10-6 8.7 X 10-5 2.7 X 10-8 8.0 X 10-8 
f 3.1 X 10-8 2.2 X 10-6 1.1 X 10-4 3.7 X 10-8 1.0 X 10-7 
Q 1.3 X 10-7 1.1 X 10-4 2.1 X 10-2 7.8 X 10-9 4.5 X 10-8 

15 a 4.0 X 10-8 8.9 X 10-6 1.6 X 10-3 3.7 X 10-8 1.6 X 10-7 

f 5.8 X 10-8 1.4 X 10-5 2.2 X 10-3 4.8 X 10-8 2.2 X 10-7 

Q 2.4 X 10-7 1.7 X 10-3 1.3 X 10-1 9.2 X 10-9 4.6 X 10-8 

20 a 5.7 X 10-8 1.8 X 10-5 1.4 X 1O-2 4.3 X 10-8 3.3 X 10-7 

f 8.8 X 10-8 2.7 X 10-5 1.9 X 10-2 5.8 X 10-8 4.5 X 10-7 

Q 2.4 X 10-7 1.1 X 10-2 8.3 9.9 X 10-9 8.4 X 10-8 

25 a 7.4 X 10-8 4.0 X 10-5 6.4 X 10-2 5.2 X 10-8 5.9 X 10-7 
f 1.2 X 10-7 5.5 X 10-5 9.6 X 10-2 6.8 X 10-8 7.9 X 10-7 

Q 3.7 X 10-7 4.5 X 10-2 130 1.2 X 10-8 1.3 X 10-7 

30 a 8.9 X 10-8 1.2 X 10-4 2.2 X 10-1 6.1 X 10-8 9.6 X 10-7 

f 1.4 X 10-7 1.7 X 10-4 3.7 X 10-1 7.9 X 10-8 1.2 X 10-6 
Q 6.4 X 10-7 1.4 X 10-1 751 1.5 X 10-8 1.6 X 10-7 

the inverse matrix produced by the latter method were good to one part in 600,000 
for order 10 to one part in 20,000 for order 30. The corresponding figures for the 
other methods were one part in about 150,000 for n = 10 to one part in about 3000 
for n = 30. The values of Q, a, and f for the A2 matrix are shown in Table I. 

The A' Matrix. An examination of the values of Q for the A3 matrix (Tables 
IA-ID) indicates that the Gauss-Jordan routine produced an inverse matrix closest 
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TABLE ID 
A Comparison of the a, f, and Q Values as a Function of Matrix Order and Inversion Method 

Rank Annihilation Method 

Matrix 
n 

A2 A3 B 

10 a 2.2 X 10-5 1.5 X 10-3 1.3 X 10-8 
f 2.6 X 10-5 2.0 X 10-3 1.6 X 10-8 
Q 8.8 X 10-5 2.6 X 10-1 0.0 

15 a 4.2 X 10-i 6.4 X 10-3 0.0 
f 5.9 X 10-5 1.1 X 10-2 0.0 
Q 1.5 X 10-3 9.1 0.0 

20 a 7.5 X 10-5 5.2 X 10-2 3.1 X 10-8 
f 1.0 X 10-4 9.4 X 10-2 4.2 X 10-8 
Q 1.2 X 10-2 97 0.0 

25 a 1.9 X 10-4 2.6 X 10-1 3.6 X 10-8 
f 2.7 X 10-4 4.7 X 10-1 5.0 X 10-8 
Q 3.9 X 10-2 440 0.0 

30 a 4.0 X 10-4 9.1 X 10-i 4.8 X 10-8 
f 6.4 X 10-4 1.4 7.1 X 10-8 

Q 9.0 X 10-2 1386 0.0 

to the exact inverse for all orders from 10 to 30. All elements of the inverse matrix 
produced by this routine are good to one part in 80,000 for nt = 10, to one part in 
1100 for n = 20 and one part in 400 for n = 30. Close behind the Gauss-Jordan 
routine for n = 10 is the congruent transformation method; however, for n = 15 
to 30 the Choleski method produced a more nearly exact inverse. At n = 30 the 
rank annihilation method appears slightly better than the congruent transformation 
method, producing an inverse each element of which is good to one part in 16. 

In addition to the above observations concerning the closeness of the approxi- 
mate inverse of the A3 matrix to the exact inverse it should be noted that the 
Gauss-Jordan and congruent transformation routines produced inverse matrices 
whose elements were in all cases smaller in magnitude than those of the exact in- 
verse, while the inverse matrices produced by the rank annihilation method were 
for all orders greater than the exact inverse. The Choleski routine produced an 
inverse matrix at orders 10 and 15 with elements smaller than those of the exact 
inverse, while at orders 20, 25 and 30 the inverse nmatrix elements were greater 
than those of the exact inverse. The low value of Q at n = 15 for the Choleski 
method reflects the fact that the elements of the approximate inverse are passing 
through a transition from all being too small to all being too large. 

The B Matrix. The B matrix is apparently so well conditioned that all four 
methods produced inverse matrices very close to the true inverse as can be seen 
in Table I. In fact the inverse matrix produced by the rank annihilation routine 
varied at most by one in the eighth significant figure from the exact inverse, and 
the values of Q computed were in all cases 0.0 to eight decimal digits. 

The D Matrix. The D matrix is also well conditioned and all the methods except 
the rank annihilation method produced inverse matrices close to the exact inverse. 
The rank annihilation routine failed to invert properly the D matrix, undoubtedly 
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because of the peculiar forma of this matrix and the peculiarities of the computer 
program as written. The values of a, f and Q for the D matrix are shown in Tables 
IA-ID. 

5. A Comparison of the Indices of Error a, f and Q. The following observations 
may be made concerning the results presented in Tables IA-ID: 

(1) The value of a is in all cases lower than the value of f. 
(2) The values of a and f are not, by themselves, reliable estimates of the close- 

ness of the computed inverse to the exact inverse. For example, if the a and f 
values alone were used to compare the approximate inverses of the A' matrix 
produced by the various inversion methods then the congruent transformation 
method would appear to be as good as the Gauss-Jordan method. However, the 
Gauss-Jordan routine produced an inverse for n = 30 good to one part in 400 
while the inverse produced by the congruent transformation method was good only 
to one part in 15. Thus the Q values (which follow this pattern) reflect the observed 
relation between the exact and approximate inverse matrices while the a and f 
values may not. A possible explanation in the latter case may be in the fact that the 
A' matrix contains elements of alternating sign while all the elements of the inverse 

TABLE II 

TValues of the Two Sides of the Inequality 

IA-' - 1 _ CH 11/(1 - 11 H 11) 

n Matrix A A2 A3 B D 

Gauss-Jordan 

10 L 8.3 X 10-v 4.1 X 10-4 3.1 X 10-2 1.2 X 10- | 5.4 X 107 
R 9.6 X 107| 5.8 X 10-4 4.7 X 10-1 2.1 X 10-7 8.9 X 10-7 

15 L 2.5 X 10-6 2.4 X 10-3 6.7 X 10-1 2.0 X 10-7 1.5 X 10-6 
R 3.7 X 10- 9.9 X 10-3 34.5 3.2 X 10-7 1.9 X 10-6 

20 L 4.7 X 10-6 3.5 X 10-2 j 103 2.5 X 10-7 2.8 X 10-6 
R 8.7 X 10-6 6.7 X 10-2 871 4.9 X 10-7 4.1 X 10-6 

25 L 7.9 X 10-1 2.0 X 10-1 1034 3. 5 X 10-7 4.4 X 10-6 
R 2.0 X 10-' 3.9 X 101 31107 6.4 X 10-7 6.4 X 10-6 

30 L 1.7 X 10-' 8.6 X 10-1 4.0 X 10-7 6.2 X 10-6 
R 3.4 X 10-| 2.0 7.7 X 10-7 8.6 X 10-6 

Choleski 

10 L 1.9 X 10-1 1.6 X 10-3 3.0 X 10-1 1.2 X 10-7 7.9 X 10-7 

R 1.2 X 10-6 1.5 X 10-3 |6.1 X 10-1 3.1 X 10-7 9.2 X 10-7 

15 L 6.2 X 106 4.0 X 102 2.9 2.3 X 10- 9.8 > 10- 

t R 1 5.2 X 10-6 4.4 X 10- 107.5 4.9 X 10-1 2.8 X 10-6 

20 L 8.5 X 106 3.4 X 10' 249 3.4 X 10- 2.3 X 106 
R 1.4 X 10-5 3.4 X 10-1 25966 7.0 X 10-7 5.9 X 1}-6 

25 L 1.5 X 10-5 1.7 - 4.8 X 10-7 6.0 X 10-6 
R 2.9 X 10-5 1.7 - 9.1 X 10-7 1.1 X 10-5 

30 L 3.5 X 10-5 6.5 6.7 X 10-7 7.6 X 11-6 
R 5.9 X 10-5 7.6 1.2 X 10-6 1.6 X 10-5 
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TABLE II-Continued 
Congruent Transformation 

10 L 1.2 X 10-7 1.4 X 10-3 1.9 X 10-' 1 1.4 X 10-v 4.6 X 10-7 
R 4.9 X 10-7 1.1 X 10-3 3.2 X 10-1 1.9 X 10-7 9.1 X 10-7 

15 L 0.0 2.7 X 10-2 27.7 2.2 X 10-7 5.4 X 10-7 
R 0.0 3.0 X 10-2 41.9 3.2 X 10-7 2.1 X 10-6 

20 L 4.4 X 10-7 2.2 X 10-1 873 3.4 X 10-7 1.9 X 10-6 
R 4.6 X 10-6 2.3 X 10-1 1106 4.8 X 10-7 3.8 X 10-6 

25 L 2.8 X 10-6 1.0 8678 4.5 X 10-7 3.0 X 10-6 
R 6.5 X 10-6 1 1.1 15416 6.5 X 10-7 5.4 X 10-6 

30 L 1.6 X 10-6 5.2 5.6 X 10-7 4.0 X 10-6 
R 8.7 X 10-6 5.8 - 7.9 X 10-7 8.6 X 10-6 

Rank Annihilation 

10 L 1.3 X 10-3 3.8 0.0 _ 
R 1.3 X 10-2 15.1 9.1 X 10-8 

15 L - 3.6 X 10-2 202 0.0 
R 2.4 X 10-1 2729 0.0 

20 L - 3.6 X 10-1 0.0 
R 1.4 - 3.8X 10-7 

25 L - 1.5 - 0.0 - 

R - 5.1 - 5.0 X 10-7 

30 L - 4.2 - 0.0 
R 19.6 - 7.1 X 10-7 

matrix are positive. Hence there may be some cancellation of errors in forming the 
(M)ap1prox M product in Eq. (3.4), this effect becoming more pronounced as the 
matrix becomes more ill-conditioned. Also the A' matrix contains many zeros (in 
fact a higher proportion the larger the order) and hence the errors in some of the 
inverse matrix elements do not show up in the a and f values. 

As shown above, the value of Q, defined by Eq. (3.1), reflects the overall differ- 
ence between the approximate inverse matrix and the exact inverse matrix. This 
quantity can be computed only if the exact inverse matrix is known, as it is in the 
case of the test matrices used in this report. In general, however, this will not be the 
case and yet it is desirable to have some method for estimating at least an upper 
bound of the difference which does not depend on knowing the exact inverse matrix. 
Such an upper bound is given by the following inequality [6] 

(5.1) 11 A-1-C 11 < 11 CH II/(1- 1f H 11) 

where A-1 is the exact inverse of the matrix A, C is the computed inverse, and H 
is a matrix defined by 

H = I - AC 

where I is the identity matrix. (Enclosure withini the double vertical lines indicates 
that the maximum row sum of magnitudes of the elements of the appropriate matrix 
is taken.) 

For comparison purposes values of both the left L and right R side of the in- 
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equality (Eq. t5.1)) were computed for all the test matrices used and the results 
are presented in Table II. 

As shown in Table II the right side of the inequality (Eq. (5.1)) is indeed usually 
greater than the term on the left, which is the maximum row sum of the matrix 
formed by subtracting the computed inverse from the exact inverse. In the few 
cases shown in Table II where the inequality does not seem to hold the apparent 
violation can probably be attributed to the particular method of rounding used 
in the arithmetic subroutines of the program and the consequent accumulation 
of round-off error. Hence it is possible to get an estimate at least of an upper bound 
of the term on the left of the inequality without knowing the exact inverse of a 
matrix. 

6. Conclusions. From the foregoing calculations it appears that any one of the 
matrix inversion methods tried will invert a well-conditioned least squares matrix 
of order 10 to 30. When the matrix becomes ill-conditioned then the Gauss-Jordan 
method appears to be clearly superior (at least for the matrices studied). However, 
if memory capacity must be considered and only a triangular array can be tolerated, 
then the Choleski and congruent transformation methods appear to offer an ad- 
vantage for large n. Only in the case of the relatively poorly conditioned A3 matrix 
did the Choleski method appear to be the better of these two for evaluating the 
inverse matrix. From a study involving the inversion of several well-conditioned 
least squares matrices of orders to n = 29 all the methods tried gave a and f values 
about two to three orders of magnitude smaller than those obtained with the A3 
matrix anid consistent with those obtained with the A matrix. 
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